53 min •
En 1931, Kurt Gödel (1906 – 1978) démontrait, dans un article révolutionnaire, qu’un système d’axiomes cohérent et suffisamment expressif est susceptible de générer des énoncés dont la validité ne peut être démontrée dans le cadre des règles mêmes qui gouvernent la formulation de ces énoncés et leurs déductions. Apparemment très technique, ce théorème bouleversait la philosophie des mathématiques, et en particulier la vieille question de leur « fondement ». Jean-Marc Deshouillers, professeur à l’Institut de Mathématiques de Bordeaux, se propose ici de décrire l’avant et l’après Gödel en retraçant l’histoire des théories mathématiques depuis Aristote et Euclide jusqu’au renversement révolutionnaire des fondements mathématiques induit par le théorème d’incomplétude.\r\n\r\n